Electron transfer in DNA duplexes containing 2-methyl-1,4-naphthoquinone.

نویسندگان

  • François Bergeron
  • Daniel Houde
  • Darel J Hunting
  • J Richard Wagner
چکیده

2-methyl-1,4-naphthoquinone (menadione, MQ) was linked to synthetic oligonucleotides and exposed to near-UV light to generate base radical cations in DNA. This model system of electron transfer induced alkali-labile breaks at GG doublets, similar to anthraquinone and metallointercalators systems. In sharp contrast to other systems, the photolysis of MQ-DNA duplexes gave interstrand cross-links and alkali-labile breaks at bases on the complementary strand opposite the MQ moiety. For sequences with an internal MQ, the formation of cross-links with A and C opposite the MQ moiety was 2- to 3-fold greater than that with G and T. The yield of cross-links was more than 10-fold greater than that of breaks opposite MQ, which in turn was more than 2-fold greater than breaks at GG doublets. The yield of damage at GG doublets greatly increased for a sequence with a terminal MQ. The distribution of base damage was measured by enzymatic digestion and HPLC analysis (dAdo > dThd > dGuo > dCyd). The formation of novel products in MQ-DNA duplexes was attributed to the ability of excited MQ to generate the radical cations of all four DNA bases; thus, this photochemical reaction provides an ideal model system to study the effects of ionizing radiation and one-electron oxidants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-resolved visible and infrared absorption spectroscopy data obtained using photosystem I particles with non-native quinones incorporated into the A1 binding site

Time-resolved visible and infrared absorption difference spectroscopy data at both 298 and 77 K were obtained using cyanobacterial menB (-) mutant photosystem I particles with several non-native quinones incorporated into the A1 binding site. Data was obtained for photosystem I particles with phylloquinone (2-methyl-3-phytyl-1,4-naphthoquinone), 2-bromo-1,4-naphthoquinone, 2-chloro-1,4-naphthoq...

متن کامل

DT-diaphorase-catalysed reduction of 1,4-naphthoquinone derivatives and glutathionyl-quinone conjugates. Effect of substituents on autoxidation rates.

DT-diaphorase catalysed the reduction of 1,4-naphthoquinones with hydroxy, methyl, methoxy and glutathionyl substituents at the expense of reducing equivalents from NADPH. The initial rates of quinone reduction did not correlate with either the half-wave reduction potential (E1/2) value (determined by h.p.l.c. with electrochemical detection against an Ag/AgCl reference electrode) or the partiti...

متن کامل

2-Bromo-1,4-naphthoquinone: a potentially improved substitute of menadione in Apatone™ therapy

Apatone™, a combination of menadione (2-methyl-1,4-naphthoquinone, VK3) and ascorbic acid (vitamin C, VC) is a new strategy for cancer treatment. Part of its effect on tumor cells is related to the cellular pro-oxidative imbalance provoked by the generation of hydrogen peroxide (H2O2) through naphthoquinone redox cycling. In this study, we attempted to find new naphthoquinone derivatives that w...

متن کامل

Metal-Independent Reduction of Hydrogen Peroxide by Semiquinones

The quinones 1,4-naphthoquinone (NQ), tetramethyl-1,4-benzoquinone (DQ), 2-methyl-1,4-naphthoquinone (MNQ), 2,3-dimethoxy-5-methyl-1,4-benzoquinone (UBQ-0), 2,6-dimethylbenzoquinone (DMBQ), 2,6-dimethoxybenzoquinone (DMOBQ), and 9,10-phenanthraquinone (PHQ) enhance the rate of H2O2 reduction by ascorbate, under anaerobic conditions, as detected from the amount of methane produced after hydroxyl...

متن کامل

Alternative quinone substrates and inhibitors of human electron-transfer flavoprotein-ubiquinone oxidoreductase.

Electron-transfer flavoprotein (ETF)-ubiquinone (2,3-dimethoxy-5-methyl-1,4-benzoquinone) oxidoreductase (ETF-QO) is a membrane-bound iron-sulphur flavoprotein that participates in an electron-transport pathway between eleven mitochondrial flavoprotein dehydrogenases and the ubiquinone pool. ETF is the intermediate electron carrier between the dehydrogenases and ETF-QO. The steady-state kinetic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 32 21  شماره 

صفحات  -

تاریخ انتشار 2004